

Biotinylation of recombinant proteins by co-expression with BirA in a range of different cell hosts

Dr. Chris Cooper

Director and Head of Protein Sciences
CHARM Therapeutics
Cambridge, UK
(ex-Peak Proteins/Sygnature)

20th P4EU Meeting HZI/ Helmholtz Centre for Infection Research Braunschweig, Germany

What is biotin?

PEAK PROTEINS
A SYCHATURE DISCOVERY BUSINESS

- Biotin (Vitamin B7) is an essential co-enzyme, literally meaning "life-giver"
- Covalently linked near the active sites of four major classes of carboxylase enzyme
- Higher eukaryotes cannot synthesise; humans obtain most biotin from gut microflora
- The egg-white glycoprotein avidin was discovered as a binder of biotin
- Streptavidin is a related protein isolated from Streptomyces avidinii and is also tetrameric but not glycosylated; both thought to provide anti-bacterial protection
- Both are extremely tight non-covalent binders of biotin ($K_d \approx 10^{-15} \, M$), resulting from extensive hydrogen bond and hydrophobic contacts, with a 'lid' closing over the biotin
- Streptavidin-biotin interactions have significant usage in molecular biology/biotechnology:
 - small and unlikely to peturb function
 - can be added to molecules enzymatically or chemically to proteins and nucleic acids
 - near covalent interaction strength e.g. stable immobilisation on surfaces
 - resistant to many denaturing agents, detergents and extremes of temperature and pH

Biotin

C10 H11 N203S

de.wikipedia.org/wiki/Avidin

What is biotinylation?

- Biotin ligases (BPLs) catalyse **covalent** addition of biotin moieties to acceptor proteins
- BirA from E. coli is one of the most studied BPLs and contains both BPL and transcriptional repression functionalities
- BirA substrate in E. coli is Biotin Carboxyl Carrier Protein (BCCP, Lys¹²²)
- Cronan et al fused 75 residues to a target protein to site-specifically biotinylate it
- However Beckett et al optimised this BCCP sequence using phage display
- Resulting 5-residue peptide is commonly known as the Avi tag
- Avi tag allows precise biotinylation on target proteins, and in conjunction with streptavidin and other avidins, has seen wide applicability in biotechnology

Biotin protein ligase complex with biotinyl-5-AMP and sulphate (PDB code 40P0)

Uses of biotin in molecular biology, drug discovery.....

- Very stable interaction between anything conjugated to biotin and streptavidin
- Hence, biotinulated proteins can be immobilised at specific sites on many different surfaces with (strept)avidin
 - solid surfaces key for surface plasmon resonance etc
 - agarose/magnetic beads HTRF/TR-FRET assays
 - purification resins including reversible Strep-Tactin resin

- MHC tetramers higher binding affinity for T-cell labelling
- ELISA signal amplification from 1:3 ratio of antibody: enzyme

Feng et al. doi.org/10.1016/B978-0-12-815053-5.00012-X

Protein biotinylation (in vitro) – how does it work

- Site-specific biotinulation on Avi tag is performed with recombinant BirA biotin ligase (EC 6.3.4.15)
- BirA can be readily purified from *E. coli* (and available in kit form)
- BirA activates biotin to form biotinyl 5' adenylate, transferred covalently to the ε-amino group of acceptor lysine residue
- Incubate in ATP-containing optimum BirA buffer, 30°C incubation for ~1 hour

- % biotinylation dependent on many factors,
 e.g. Avi tag accessibility at the N/C- termini
- Buffer composition can affect BirA activity (>100 mM NaCl, > 5% glycerol)
- · BirA most likely still needs to be removed
- Further purification may be required (e.g. SEC)

Protein biotinylation — how to biotinylate in vivo

- Why bother to biotinylate (Avi-tags) in vivo?
- In vitro biotinylation is has some issues, an alternative is available!
- In vivo biotinylation is well-established in a number of cell systems

- Avi-tag biotinylation may happen to a degree in *E. coli* during expression
- however exogenous BirA may be needed for full Avi-tag biotinylation
- codon optimisation is likely needed for BirA in non-bacterial hosts
- biotin is water soluble but sparsely however 100 mM solutions can be prepared by neutralising with NaOH to ~pH 7
- maybe biotin powder can be added directly to cultures (anyone want to try? $\stackrel{ullet}{=}$)
- does the end user want ALL the protein to be biotinylated?

In vivo protein biotinylation — detection methods

- Why do we need to confirm biotinylation?
 - biotinylation is not always efficient; Avi-tag accessibility can factor
 - homogeneity <u>may not be important</u> for some downstream functions (e.g. SPR)
 - however homogeneity <u>may be crucial</u> for some applications (process development, HTRF etc)
- Different modalities of biotinylation detection
 - Western blot reasonably sensitive and quantitative, but does not detect unbiotinylated protein
 - ELISA similar to western blot but more sensitive, quantitative and HTP
 - streptavidin gel shift –detects both un/biotinylated species and can be partially quantitative with GFP
 - mass spectrometry (e.g. LC/ESI-TOF MS) super sensitive and (semi)-quantitative BUT super £\$€¥

Bacterial in vivo biotinylation

13800

13900

14000

14100

14200

Mass. Da

14300

14400

- Heterotrimeric human complex (A-B-C) expressed in E. coli
- BirA & protein A (C-terminal Avi) pETDuet vector
- Proteins A & B (N-terminal 6xHis/TEV in pCDFDuet1
- Expression was induced by IPTG and 100 μM biotin added
- Mass shift of +226 Da indicates single biotinulation
- ~80% of the complex has been biotinylated (peak heights)
- Modified system with BirA in pCDFDuet background as pET28/Kan background is more commonly used
 - Free MCS2 in pCDF for cloning (BirA in MCS2)
 - And/or cotransform with pET28/pCDF-BirA competent cells
 - Biotin addition at point of cooling cells ~1 hour prior to induction may work better...?

Insect cell *in vivo* biotinylation

- A biotinylated version of a highly disordered protein was required for a high-throughput screening assay
- Insect BEVS system chosen due to nature of IDP
- Codon-optimised BirA cloned into pOET1
- Avi-tagged target protein cloned separately into pOET1
- Viruses made and Sf21 cells were co-infected with both
- Cells were supplemented with 4 μM biotin at infection.
- Some useful considerations:
 - no BirA in insect cells so Avi-tagged protein can be made
 +/- biotinylation
 - exogenous BirA otherwise needed
 - BirA found to associate with biotinylated proteins
 - BirA: target virus to 1:10 reduced this issue AND increased target yield

Insect cell *in vivo* biotinylation

- Expression was good and ~pure after IMAC
- Multiple PTMs complicated intact MS analysis:
 - multiple phosphorylations (blue arrows)
 - acetylation
 - single biotinylation
- Dephosphorylation with λ phosphatase allowed intact MS deconvolution
- Almost complete biotinylation of single site
- Demonstrates power of intact MS combined with PTM removal

In vivo biotinulation for mammalian secretion

- Licenced HEK293-6E and pTT5 expression system chosen for expression of a heterodimeric cytokine ($\alpha + \beta$ subunits)
- Secretion required due to disulphide linkages (IgK leader peptide)
- Biotinylation required too BirA required but it is intracellular...
- Codon-optimised BirA cloned into pTT5 with IgK leader
- BirA plasmid transfected at 1/10th of amount of other two plasmids
- Cells were supplemented with 4 μM biotin at transfection
- Experiment was also performed in absence of BirA (+biotin)
- Some useful considerations:
 - no BirA in mammalian cells so Avi-tagged protein can be made +/biotinylation
 - Some literature suggestions that intracellular BirA may not be able to biotinylate secreted protein fully – co-secrete so both pass through the ER secretory system

In vivo biotinylation for mammalian secretion

- The main species in both conditions is highlighted above with an arrow
- Multiple glycan species are shown all increasing by a single hexose unit (162 Da).
- Each glycan species was +226 Da following co-expression with BirA indicating single biotin addition
- The shift in size was 100%, indicating complete biotinylation of all the secreted protein.

- This approach has also been successful in CHO cells
- Potential disadvantage cannot capture straight onto streptavidin
 - biotin in media/supplemented likely to block interaction/sequester streptavidin
 - · initial purification capture step would be required
 - also possible to remove biotin e.g. BioLock (£\$€¥)

In vivo protein biotinylation — future directions?

- Lots of advantages to *in vivo* biotinulation:
 - Reduced processing times & cost
 - No requirement to remove BirA (slight caveat....)
 - No BirA buffer compatibility issues/issues with temperature incubation
 - Still lots to improve on however!
- More studies on how much biotin is needed in exogenous media (especially eukaryotic systems)
- Limitations of biotinulation accessibility of Avi-tag (problem for *in vitro* too)
- Genome engineering tagged BirA for subtractive removal/genomically encoded? Knock into Sf21/HEK293?
- Lower copy plasmids/weaker or inducible promoters to drive BirA expression in E. coli
- In vivo biotinulation in other less common expression systems already exists in some!

Acknowledgements

Sophie Huber

Dr Gurdeep Minhas

Ailsa Townley

Ros Brant

Emma Cains

Catherine Geh

Dr Mark Elvin (Head of Expression)

Entire Protein Sciences and Mass Spectrometry team

